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Abstract
The hornwort Anthoceros agrestis is emerging as a model system for the study of symbiotic interactions and carbon fixation 
processes. It is an annual species with a remarkably small and compact genome. Single accessions of the plant have been 
shown to be related to the cosmopolitan perennial hornwort Anthoceros punctatus. We provide the first detailed insight into 
the evolutionary history of the two species. Due to the rather conserved nature of organellar loci, we sequenced multiple 
accessions in the Anthoceros agrestis–A. punctatus complex using three nuclear regions: the ribosomal spacer ITS2, and exon 
and intron regions from the single-copy coding genes rbcS and phytochrome. We used phylogenetic and dating analyses to 
uncover the relationships between these two taxa. Our analyses resolve a lineage of genetically near-uniform European A. 
agrestis accessions and two non-European A. agrestis lineages. In addition, the cosmopolitan species Anthoceros punctatus 
forms two lineages, one of mostly European accessions, and another from India. All studied European A. agrestis accessions 
have a single origin, radiated relatively recently (less than 1 million years ago), and are currently strictly associated with 
agroecosystem habitats.
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Introduction

Large-scale projects have implemented model organisms in 
each of the major green plant phyla, including algae and bry-
ophytes (Chang et al. 2016). One of the latest model organ-
isms to be sequenced is the bryophyte Anthoceros agrestis 
(Szövényi 2016). This hornwort is emerging as a model for 
studies of plant  N2-fixing bacterial interactions (Villarreal A 
and Renzaglia 2015), carbon concentrating mechanisms (Li 
et al. 2017) and stomatal evolution (Renzaglia et al. 2017).

The choice of a plant species as a model organism 
requires balancing economical and evolutionary significance 
with pragmatism: the ideal model species should have a 
small genome size, be easy to grow and genetically tractable. 
Firstly, a small genome facilitates whole genome sequenc-
ing. In this regard, Anthoceros agrestis is ideal. It has one 
of the smallest genome sizes among plant model systems 
and the smallest reported bryophyte genome, with a genome 
size of 70–110 Mbp, and only 6.98% transposable elements 
(Szövényi 2016). Easy laboratory and genetic manipulation 
are practical necessities for the study of organ develop-
ment, gene function and genome architecture. Anthoceros 
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agrestis also fits this criterion: its life cycle can be completed 
in 1–3 months in field and laboratory conditions (Bisang 
2003), and Agrobacterium-mediated genetic transformation 
is currently being developed for the species (E. Frangeda-
kis unpublished data). Finally, hornworts are at centre stage 
in the debate on early land plant diversification (Puttick et al. 
2018), and thus are highly evolutionarily significant.

Instigating a novel plant species as a “model system” has 
frequently prompted detailed investigations of its evolution-
ary history, placing it into a broader biological context. For 
example, the moss model system Physcomitrella patens 
(473 Mbp) shows a complex evolutionary history, with the 
genus Physcomitrella apparently polyphyletic (McDaniel 
et al. 2010; Beike et al. 2014; Medina et al. 2019). In con-
trast, the liverwort model system, Marchantia polymorpha 
ssp ruderalis (226 Mbp; Bowman et al. 2017) has a relatively 
recent origin relative to ssp monitvagans and ssp polymor-
pha (~ 5 Ma) (Villarreal A et al. 2016). The most recently 
chosen bryophyte model organisms include the fire moss 
Ceratodon purpureus (340 Mbp; McDaniel and Shaw 2005), 
which has a history of introgression, recurrent interconti-
nental dispersal and selective sweeps and the peat mosses 
Sphagnum fallax (473 Mbp; Shaw et al. 2016) and S. magel-
lanicum, which also have complex histories, with hybridisa-
tion and the presence of geographically structured species 
complexes.

The taxonomic history of Anthoceros agrestis is difficult 
to separate from that of the widespread perennial hornwort, 
Anthoceros punctatus. Both species are found in or near 
man-made habitats (near roads, paths, ditches, in agricul-
tural fields and waste land) and are widely distributed in 
Europe, North America and Asia (Proskauer 1958; Paton 
1979; Schuster 1992). Anthoceros agrestis has been recog-
nised informally for decades, and was formally described 
by Paton (1979), based on British plant specimens; how-
ever, due to their identical spore architecture, A. agrestis has 
often been considered a subspecies or variety of A. punctatus 
(Proskauer 1958; Schuster 1992). Conversely, there is a sug-
gestion that A. punctatus could be a neopolyploid form of A. 
agrestis (Proskauer 1957): A collection of the species from 
Portugal was reported to have n = 10 chromosomes, instead 
of the five chromosomes that are typical for monoicous 
hornworts (Proskauer 1957). The larger reported genome 
size of Anthoceros puctatus (129–178 Mbp; Li unpublished 
data; Bainard and Villarreal A 2013) compared to a size 
of 70–110 Mbp for A. agrestis (Szövényi 2016; Szövényi 
unpublished data) also suggests that polyploidy may be 
involved in this lineage. The major morphological differ-
ences between the two species are the size of their anther-
idia, and to a lesser degree their thallus and sporophyte size 
(A. agrestis being the smaller of the two). This also seems to 
tie in with the hypothesis of a polyploid origin for A. puncta-
tus, given the links between cell/spore size and genome size 

in other plant groups. Additionally, A. punctatus is a rather 
longer lived and more robust species (Proskauer 1958; Paton 
1979; Schuster 1992).

Phylogenetic analyses using single accessions of both spe-
cies confirm their close relationship (Duff et al. 2007, using 
plastid rbcL, mitochondrial nad5 and nuclear 18S mark-
ers), with a more recent work suggesting that the Ascension 
Island neoendemic Anthoceros cristatus is also involved in 
the species complex (Villarreal A et al. 2017, using plastid 
rbcL and matK and mitochondrial nad5 markers).

There are some ecological differences across the geo-
graphic range of Anthoceros agrestis. In North America, 
for example, Anthoceros agrestis is found associated with 
crops and in recently abandoned fields, whereas in Europe, 
it is found almost entirely in arable fields that are regularly 
tilled (Bisang 1992).

In many parts of Europe, Anthoceros agrestis is a short 
lived summer annual, with the plants overwintering as 
spores (Paton 1979; Bisang 1995). Sporophytes of the Euro-
pean A. agrestis mature from late July/August to December, 
depending on climate, weather conditions and management 
(Bisang 1995, 1998), doing best when the fields are stubble 
rather than growing crops and/or spring cultivated (Bisang 
1998; Blockeel et al. 2014). The populations that grow up 
in these fields are dynamic, with a fast growth rate, repro-
ductive maturity and death occurring more or less continu-
ously throughout the season (Bisang 1995). Unfortunately, 
the population size is dwindling in many parts of its Euro-
pean distribution range due to changes in farm practices and 
habitat loss (Schnyder et al. 2019); the species was recently 
assessed as near-threatened in the Red List of European 
bryophytes.

Adaptations to agricultural environments seem to be an 
intrinsic part of the biology and life cycle of Anthoceros 
agrestis, giving rise to the hyopthesis that the species has 
evolved alongside the domestication and spread of agricul-
tural crops in Eurasia and America, which occurred in the 
last 9–12,000 years (Matsuoka et al. 2002; Purugganan and 
Fuller 2009). The annual life cycle of the species, poten-
tially imposed by farming practices, could then have trig-
gered streamlining of its genome (Villarreal A et al. 2017).

Based on the natural history and preliminary phylogenetic 
information, there are several distinct scenarios for the origin 
of A. agrestis. There may have been a single origin of A. 
agrestis, accessions of which would resolve monophyleti-
cally within a clade of A. punctatus accessions. Anthoceros 
agrestis, as a ruderal species associated with early human 
settlements, could have spread rapidly around the world 
along with the Holocene agricultural revolution, in which 
case we would also expect a molecular signature of rapid, 
recent population expansion (an agricultural ecotype). In 
contrast, Anthoceros agrestis may have been the progenitor 
species for Anthoceros punctatus. In this case, we would 
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expect to see A. punctatus phylogenetically nested within 
an A. agrestis complex (essentially the reverse of the previ-
ous scenario). The phylogenetic analyses for such scenarios 
will assume that markers used have coalesced for the taxa 
and that they now form monophyletic entities. It is also pos-
sible that the Anthoceros agrestis lifestyle may have arisen 
multiple times as a response to similar ecological conditions, 
making the morphological taxon polyphyletic.

In the present study, to assess the phylogenetic affinities 
of A. agrestis, we have sequenced three nuclear genes from 
multiple accessions of A. agrestis and A. punctatus, focusing 
mostly on Europe and North America.

Materials and methods

Molecular methods

We sequenced 51 accessions representing Anthoceros punc-
tatus and A. agrestis from Europe, the Americas, Australia 
and Asia (Online Resource 1, Fig. 1). Given some uncer-
tainty as to what the closest extant relative of A. agrestis 
and A. punctatus is, we included several related species 
of Anthoceros as outgroup taxa, based on previous studies 
(Duff et al. 2007; Villarreal A et al. 2017). We included 
five accessions of A. neesii, three accessions of A. cristatus 
and one accession each of A. venosus, A. lamellatus and A. 
fragilis. All those species share similar spore morphology 

and have been associated with the A. punctatus complex 
(Schuster 1992; Villarreal A et al. 2015). Voucher informa-
tion and GenBank accession numbers are available in Online 
Resource 1. The DNA extraction and PCR amplification 
followed standard protocols (available upon request). The 
data set includes nucleotide sequences from two single-copy 
nuclear loci: part of the RuBisCO small subunit (rbcS) that 
includes sequence data from three exons (1, 2 and 3) and the 
two introns between them; part of the phytochrome gene that 
includes sequence data from exons 2 and 3 and the intron 
between them; and the internal transcribed spacer 2 region 
(ITS2). Primers to amplify the rbcS and phytochrome loci 
were newly generated as part of this study (Online Resource 
2). In previous work and as part of a pilot study for this 
paper, we amplified several standard plastid intron and 
spacer regions; we ruled out inclusion of these loci (e.g. 
psbA-trnH; trnL-trnF) due to low genetic variability between 
accessions.

We used Geneious 9.0.5 (Biomatters Limited) to gener-
ate an initial alignment of the nucleotide sequences, with 
subsequent manual augmentation. Due to some failed ampli-
fications, the final data matrix (hereafter called dataset I) 
comprises forty-seven accessions that have sequence data 
for at least two loci, including thirty accessions of A. agres-
tis, twelve accessions of A. punctatus, two accessions of A. 
neesii and one each of A. cristatus, A. lamellatus, A. venosus 
and A. fragilis. A subset of the matrix used for the dating 
analyses (data set II) contains 20 accessions and includes 

Anthoceros agrestis
Anthoceros punctatus
Anthoceros cristatus
Anthoceros neesii
Anthoceros cf. venosus

Anthoceros fragilis
Anthoceros lamellatus

Fig. 1  Geographic location of samples of Anthoceros included in this study. The provenance of each sample is found in Table S1
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representatives of A. agrestis, A. punctatus and the outgroup 
species A. neesii, A. cristatus and A. fragilis.

Phylogenetic analyses

We analysed each locus separately, and also as a single par-
titioned data set with models suggested by PartitionFinder 
(Lanfear et al. 2012), under the maximum likelihood crite-
rion (ML), using RAxML black box (Stamatakis 2014) with 
500 bootstrap replicates (MLB). Basic statistics on each data 
set were retrieved using PAUP* (Swofford 2002). Bayes-
ian analyses on the combined data set were conducted in 
MrBayes 3.2 (Ronquist et al. 2012), using the default two 
runs and four chains, with default priors on most param-
eters. To assess burn-in and convergence, we compared the 
bipartitions across the two runs. Convergence was usually 
achieved in MrBayes after 2 × 107 generations, with trees 
sampled every 10,000th generation for a total length of 
10 × 106 generations; we discarded 25% of each run and then 
pooled runs. The final matrix is available at Dryad https 
://doi.org/10.5061/dryad .qnk98 sfcb. All analyses were run 
under the CIPRES platform (Warnow 2010).

Molecular clock dating

We used a root prior from a previous study (Villarreal A 
et al. 2015) to date a phylogeny produced using data set 
II, with A. cristatus, A. fragilis and A. neessii as outgroup 
taxa. There is no reliable fossil described from Anthoceros, 
although spores similar to those of A. punctatus and referred 
to as Rudolphisporis rudolfii have been reported from Late 
Miocene (Machnín, Bohemia), Pliocene and Pleiostocene 
deposits from Europe (Krutzsch 1963). We have decided to 
use a root prior because of the uncertainty around this fossil 
spore and the lack of precise dating of the stratum. We gave 
the root a normal prior, with a mean of 20 Ma and sd of 3, 
to account for the highest posterior density (HPD) from a 
previous study (Villarreal A et al. 2015). In addition, we 
used the crown age of the A. punctatus–agrestis group from 
this previous study, applying it to the ingroup with a mean 
of 6 Ma and sd of 1. The last calibration used was the age of 
Ascension Island, as a proxy age for the neoendemic A. cris-
tatus. Ascension Island is the tip of an undersea volcano that 
is thought to have emerged from the ocean one million years 
ago (Ashmole and Ashmole 2000). We used a normal prior 
with a mean of 1 and sd of 0.25. To explore the effective 
priors, we ran analyses with either one or two calibrations at 
a time, and one on an empty alignment, to compare the fre-
quency distribution of age estimates for each calibrated node 
with the prior. Bayesian divergence time estimation used a 
Yule process tree prior with unlinked data partitions, using 
same substitution models suggested by PartitionFinder. 
The analyses were done using an uncorrelated lognormal 

(UCLN) relaxed clock model. The MCMC chains were run 
for 900 million generations, with parameters sampled every 
10,000th generation using BEAST 1.8.3 (Drummond et al. 
2012). Tracer 1.6 (Rambaut et al. 2014) was used to assess 
effective sample sizes (ESS) for all estimated parameters and 
to decide the appropriate percentages of burn-in. We veri-
fied that all ESS values were > 200. Trees were combined in 
TreeAnnotator 1.8 (part of the BEAST package), and maxi-
mum clade credibility trees with mean node heights were 
visualised using FigTree 1.4.0. We report the HPD intervals 
(the interval containing 95% of the sampled values).

Results

Phylogenetic analyses

Nucleotide sequences were generated for the three nuclear 
loci (aligned length 1,965 bp): part of the small RuBisCO 
subunit gene including exons and spacers (rbcS), part of 
the phytochrome gene including exons and a spacer and 
the internal transcribed spacer 2 region (ITS2). Sequenc-
ing was most successful for the ITS2 locus, however, there 
are only 14 parsimony informative characters (3.0%). The 
phytochrome locus comprises a similar proportion of 
parsimony informative characters (2.9%), while the rbcS 
locus contains most of the variation in the data, com-
prising 17% parsimony informative characters (Online 
Resource 3). Single locus analyses produce different lev-
els of resolution and support. The phytochrome and rbcS 
analyses support few monophyletic groups and resolve the 
backbone of the phylogeny poorly (Online Resource 4). 
Plants with Anthoceros agrestis morphology are placed in 
three distinct and statistically supported lineages: a highly 
supported European A. agrestis clade, a Chinese/Austral-
ian clade and an American A. agrestis clade (only sup-
ported in MrBayes run, data not shown). A monophyletic 
Anthoceros punctatus is not recovered in any analysis.

The three-locus concatenated data set (data set I) recov-
ers a monophyletic ingroup (79% MLB, 1.00 PP) (Fig. 2a). 
The Ascension Island endemic Anthoceros cristatus is 
sister to a clade that includes multiple accessions of A. 
agrestis and A. punctatus, A. venosus from Panama and A. 
lamellatus from Ecuador. The relationships between these 
lineages are not supported in our phylogenetic analyses; 
they are separated by extremely short branches (Fig. 2a). 
The ingroup segregates into (Fig. 2a):

A. An unsupported clade/grade containing A. punctatus 
from India, A. lamellatus and A. venosus (62% MLB, 
0.74 PP);

https://doi.org/10.5061/dryad.qnk98sfcb
https://doi.org/10.5061/dryad.qnk98sfcb
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B. The A. punctatus accessions from Europe and the USA 
(California) (100% MLB, 1.00 PP), with nearly invari-
able sequences;

C. The Chinese and Australian accessions of Anthoceros 
agrestis (76% MLB; 0.95 PP);

D. All the Anthoceros agrestis samples from the USA (New 
York, Florida and Illinois) (89% MLB, 1.00 PP);

E. All European accessions of Anthoceros agrestis, from 
France, Germany, Norway, Poland, Sweden, Switzerland 
and the United Kingdom (86% MLB, 1.00 PP), with 
nearly invariable sequences.

Molecular clock dating

Using the root prior and the island calibration, the crown 
age of the European A. agrestis lineage is 160,000 years 
(HPD—0.000001–0.4 Ma) (Fig. 2b, Online Resource 5, 
Online Resource 6). Under this calibration scheme, the 
crown age of the European and the US A. punctatus line-
age is 0.24 Ma (HPD—0.000003–0.6 Ma). Other calibra-
tion schemes give slightly older estimates with overlapping 
HPD; however, the root calibration resulted in an older age 

a

France 
Germany
Poland 
Norway 
Sweden 
Switzerland 
United Kingdom 

Florida, 
Illinois
New York1
New York2
New York3

China
Australia 

A. punctatus

Germany, Spain,
United Kingdom,
California

A. punctatus India
A. lamellatus Ecuador
A. venosus Panama

A. neesii Czech Rep.

A. cristatus Ascension Is.
A. neesii Czech Rep.

A. fragilis Australia 

A

B

D

E

C

0.005

A. cf. punctatus India

A
nthoceros agrestis

Root calibration 
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Time MRCA (Ma) - European Anthoceros agrestis
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Fig. 2  a Maximum likelihood (ML) phylogram from the combined 
phytochrome, rbcS and ITS2 DNA sequence analyses of Anthoceros. 
A single origin of European A. agrestis accessions is highlighted 
(red), as is the US clade of A. agrestis (blue) and a Europe–US clade 
of A. punctatus (yellow); ML bootstrap and posterior probability val-
ues are annotated as symbols on the trees. Clades A-E are annotated 

in the text (b). Age of diversification of European A. agrestis using 
three calibration schemes and their marginal density: (1) a root cal-
ibration (purple), (2) root and island calibration (red) and, (3) root, 
internal and island calibration. Two of them (2, 3) are overlapping, 
and therefore, only the root + island calibration is visible. The node 
ages and HPD intervals are shown in Online Resource 5
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for the crown European A. agrestis with a broader HPD 
(Fig. 2b, Online Resource 5; Online Resource 6).

Discussion

A single and recent origin of the European 
Anthoceros agrestis

Our analyses recover a single recent origin of the European 
lineage of the model plant Anthoceros agrestis (Figs. 2, 3). 
However, overall, the concatenated gene analyses support 
several distinct A. agrestis lineages: the European clade 
and a clade from the USA, while accessions of A. agrestis 
from China and Australia are genetically distinct from both 
these lineages. Although the exact relationships of these 
lineages to each other cannot be ascertained with our data, 
this is likely due to a relatively rapid diversification event 
in the complex (Online Resource 6a-c). Multiple origins 
of either species are possible, concurrent with this rapid 
diversification.

Accessions of Anthoceros punctatus from Europe and the 
USA (California) form a monophyletic group, while Antho-
ceros punctatus from India, A. lamellatus from Ecuador and 
A. venosus from Panama form another clade (albeit with 

low MLB/PP support). Anthoceros lamellatus and A. veno-
sus are morphologically similar to A. punctatus, with slight 
variation in the spore architecture (Schuster 1992; Villar-
real A et al. 2015). The surprising finding that the Califor-
nian accession of A. punctatus resolves with the European 
A. punctatus clade with little genetic divergence suggests 
either recent long-distance or human-mediated dispersal. 
Long-distance dispersal is commonplace among bryophytes 
species: Recently biotic (e.g. birds) and abiotic vectors have 
been shown to be responsible for even bipolar distributions 
(Cargill et al. 2013; Lewis et al. 2014).

The genetically distinct lineages found within A. agres-
tis– A. punctatus are not hierarchically congruent with the 
morphological concepts of either species. This seems to be 
a recurrent theme in bryophyte systematics (Cargill et al. 
2013; Lewis et al. 2014; Biersma et al. 2017).

The short branch lengths and low levels of support for 
the branching pattern between lineages of A. agrestis and 
A. punctatus in the phylogenetic analyses make it difficult 
to rule out a single origin of A. agrestis. However, the line-
ages of A. agrestis have deep levels of genetic divergence 
between Europe and America, indicative of a long separa-
tion. Proskauer’s suggestion (1957) that A. punctatus may 
have evolved from A. agrestis is not supported by our data, 
given that the A. punctatus lineages occur in several places, 

Fig. 3  Known European 
distribution of Anthoceros 
agrestis shown in yellow (10 
March 2017), with permission 
from LIFE IUCN European 
Red List project (contract 
number LIFE14PREBE001). 
Map sources: Esri, HERE, 
deLorme, Intermap increment 
P Corp., GEBCO, USGS, 
FAO, NPS, NRCAN, GeoBase, 
IGN, Kadaster NL, Ordnance 
Survey, Esri Japan, METI, Esri 
China (Hong Kong), swisstopo, 
MapmyIndia, © OpenStreetMap 
contributors and the GIS user 
community. Inset: a field pho-
tograph of Czech A. agrestis, 
courtesy of L. Hedenäs
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interspersed with lineages of A. agrestis. Furthermore, we 
did not pick up alleles or paralogues of the reportedly single-
copy nuclear loci in our sequence data, as we might find in a 
polyploid plant, although amplicon-based Sanger sequenc-
ing is not the best way to explore gene copy number. Our 
data instead show several genetically distinct lineages with 
A. agrestis life history types, in China, Australia, the Ameri-
cas and Europe (Online Resource 4). Further molecular and 
morphological study is required to establish the taxonomic 
status of these lineages—given that A. agrestis is typified by 
plants from near Oxton, Nottinghamshire, England (Paton 
1979), it may be that other names will be required for the 
non-European lineages.

One of most important implications of this current study, 
though, is that any data relating to the “model” organism 
Anthoceros agrestis needs to be qualified with the origin of 
the material. For example, the plants that have been high-
throughput sequenced for genome assembly came from near 
Hirschbach, Germany and Berwickshire, Scotland (Szövényi 
et al. 2015). The genome size estimate of 71 Mbp is based on 
Kmers analysis of Illumina sequencing data of material from 
near Hirschbach, Germany (Szövényi et al. 2015), while an 
estimate of 83 Mbp is based on flow cytometry of material 
from an unknown location (Greihhuber 2005; Leitch and 
Bennett 2007). A further estimate of 110 Mbp is based on 
Kmer analysis of Illumina sequencing data of material from 
Berwickshire, Scotland (Li unpublished data). There is, as 
yet, no information about the genome size or chromosome 
number of plants belonging to the American or Asian A. 
agrestis lineages. An estimate of 178 Mbp for Anthoceros 
punctatus is based on flow cytometry of a sample from Aus-
tralia (Bainard and Villarreal A 2013), while an estimate of 
129 Mbp is based on Kmer analysis of Illumina sequenc-
ing data from a sample from Humboldt County, California, 
USA (Li unpublished data). Samples of the related species 
Anthoceros lamellatus from Colombia and Panama, meas-
ured using flow cytometry, have genomes of 185 Mbp and 
193 Mbp, respectively (Bainard and Villarreal A 2013), 
although there are no chromosome number counts for these 
plants, to correlate polyploidy with geographical origin or 
phylogenetic affinities.

The low level of nucleotide diversity and correspondingly 
short branch lengths in the crown European A. agrestis line-
age reflect a recent divergence of extant populations, and 
the dated phylogeny supports this, placing the divergence 
of these accessions in the last 1 million years (Fig. 2b), 
depending on the analysis. However, given the low amount 
of genetic variation that we have observed within European 
A. agrestis, it is not possible to determine with certainty 
whether the divergence actually took place as recently as 
the last 10,000–20,000 years, or whether the low observed 
genetic diversity within the European A. agrestis lineage 
could be due to recolonisation after glaciation.

Alternatively, we propose that A. agrestis may have been 
a ruderal species, effectively pre-adapted, by its occurrence 
in disturbed habitats, to human settlements; the species may 
subsequently have become “co-opted” more recently to its 
current rotating crop-field habitats as a by-product of the 
crop domestication process. In this case, the A. agrestis lin-
eage itself may substantially predate the establishment of 
agricultural cultivation in Europe, surviving in refugia in 
interglacial periods, with the species only latterly becoming 
associated with agricultural practices.

Estimation of trajectories of changes in effective popula-
tion size over time, using pairwise sequentially Markovian 
coalescent (PSMC), could cast more light on the popula-
tion history of European A. agrestis. A recent pilot SNP 
analysis of two individuals of A. agrestis, one collected near 
Hirschbach, Germany and one collected in Berwickshire, 
Scotland, reported nearly 2 SNPs/kbp (Szövényi et al. 2015). 
This level of polymorphism is similar to reports from crop 
and weedy accessions of the cereal Sorghum bicolor (L.) 
Moench (2.7 SNPs/kbp) (Morris et al. 2012) and suggests 
that despite the low genetic diversity and lack of phyloge-
netic resolution in analyses using the three loci we have sam-
pled, there is promising information to be harvested from a 
genome-wide study across the European A. agrestis lineage.

The other two A. agrestis lineages seem to differ from 
the European populations in several respects. From our phy-
logeny, it is evident that the American A. agrestis clade is 
more structured than the European clade, with longer branch 
lengths suggesting genetic isolation. The annual A. agrestis 
plants from Florida and Illinois are not strictly associated 
with agricultural fields (Schuster 1992), and they produce 
sporophytes in the spring instead of late summer/autumn. 
Anthoceros agrestis from New York is associated with maize 
and soybean fields and, like the European plants, the sporo-
phytes are found in the late summer and autumn. In general, 
there is limited data about the natural history of A. agrestis 
in North America and Asia, so the tight association of these 
populations with agricultural practices, as seen in Europe, 
cannot be sufficiently confirmed. Since historic agricultural 
practices in eastern Asia are very different from those seen 
in Europe, it is entirely conceivable that ecological and evo-
lutionary constraints on the plants will not be the same.

Agriculture management and land use have undergone 
immense changes since the Second World War, with very 
negative impacts on the wildlife of agricultural ecosystems 
(e.g. Tscharntke et al. 2005; BirdLife International 2015). 
The intensification of crop farming practices has resulted in 
an alarming decline of, and threat to, many arable species 
that are adapted to regular disturbance through tillage (e.g. 
Donald et al. 2001; Meyer et al. 2013). Likewise, hornwort 
populations have decreased in many parts of Europe (Bisang 
et al. 2009; Schnyder et al. 2019). Hornworts are not known 
from any places that would be considered “primary” habitats 
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in Europe today, and meanwhile, the negative impact of agri-
cultural intensification on biodiversity is predicted to con-
tinue (Reidsma et al. 2006). The low level of sequence vari-
ation among European accessions of A. agrestis, as shown 
in this study, indicates limited genetic variation within the 
lineage. The corollary of this is that the species may have 
low adaptability to environmental changes, leaving the Euro-
pean clade of A. agrestis at risk of extinction in the absence 
of targeted conservation actions (Bisang et al. 2009; Schny-
der et al. 2019).

Conclusion

We have studied the evolutionary history of the model horn-
wort species, Anthoceros agrestis. Our data suggest that all 
European accessions of the species have a single origin, with 
little genetic divergence between them. However, lineages 
of A. agrestis from other geographic areas may have inde-
pendent origins. We suggest that the European A. agrestis 
may have been a ruderal species, pre-adapted to disturbed 
settings, that was “co-opted” to the rotating field habitats 
that resulted from crop domestication. This hypothesis could 
be tested in other bryophyte species that are strongly asso-
ciated with arable field habitats (Porley 2008), as well as 
in vascular plants that are associated with rotating crops in 
Europe and North America, and compared with patterns of 
evolution in rice-paddy-associated bryophytes. Our study 
prompts consideration of secondary implications of agricul-
tural practices on non-crop plant population biology.
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