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Increasing evidence indicates that wide distributed bryophyte taxa with homogeneous morphology may represent 
separate evolutionary lineages. The evolutionary histories of these cryptic lineages may be related to historical factors, 
such as the climatic oscillations in the Quaternary. Thus, the post-glacial demographic signatures paired with cryptic 
speciation may result in complex phylogeographic patterns. This research has two aims: to determine whether the 
widespread moss Racomitrium lanuginosum represents cryptic molecular taxa across the Northern Hemisphere and 
to infer the effects of Quaternary glaciations on spatial genetic diversity. We used the internal transcribed spacer 
(ITS) marker to resolve the phylogeographic history of the species and single nucleotide polymorphisms (genotyping-
by-sequencing) to infer the genetic structure and demographic history. Finally, we assessed the historical changes 
in the distribution range using species distribution models. Racomitrium lanuginosum comprises distinct molecular 
lineages sympatrically distributed in the Northern Hemisphere. We also uncovered long-distance dispersal from 
eastern North America to Scandinavia and potential in situ survival in northern Scandinavia. Due to the genetic 
signatures, the Alaska Peninsula could be considered a glacial refugium. The species experienced post-glacial 
expansion northwards in the Northern Hemisphere, mainly from the Alaska Peninsula. Our results exemplify the 
complex phylogeographic history in cold environments and contribute to recognizing evolutionary patterns in the 
Northern Hemisphere.

ADDITIONAL KEYWORDS:   biogeography – bryophytes – dispersal – ecology – genetics – glacial refugia 
–molecular evolution – phytogeography – systematics.

INTRODUCTION

Wide spatial distribution ranges spanning different 
continents are characteristic of spore-dispersed 
organisms, such as plants and lichens (e.g. Alors 
et al., 2017; Hernández-Rojas et al., 2020). Among 
plants, bryophytes exhibit worldwide and disjunct 

distributions as evidence of their vagility (McDaniel 
& Shaw, 2005; Pisa et al., 2014; Kyrkjeeide et al., 
2016a; Biersma et al., 2017; Patiño & Vanderpoorten, 
2018; Vanderpoorten et al., 2019). The extensive 
distribution range of some bryophyte species [e.g. 
Racomitrium lanuginosum (Hedw.) Brid., Sphagnum 
magellanicum Brid.] has led to reconsideration of 
whether they represent single taxonomic entities 
or species complexes. Integrative approaches using 
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morphological, molecular and ecological data have 
recognized distinct bryophyte species in taxa with 
wide distribution ranges (Medina et al., 2013; Patiño 
et al., 2017; Köckinger & Hedenäs, 2017; Sim-Sim 
et al., 2017; Renner, Heslewood & Heinrichs, 2018; 
Vigalondo et al., 2019; Hedenäs, 2020b). However, 
in some cases, bryophyte disjunct populations have 
little morphological variation and lack distinctive 
traits for species recognition, often resulting in the 
circumscription of one single taxon (Shaw, 2001; 
Renner, 2020). In a general sense, cryptic taxa are 
genetically differentiated lineages that do not exhibit 
distinctive phenotypic traits (Struck et al., 2018). 
Several cryptic taxa have been identified in widely 
distributed bryophytes using data from molecular 
markers (McDaniel & Shaw, 2003; Hedenäs, 2008, 
2010; Fuselier et al., 2009; Kyrkjeeide et al., 2016b; 
Lewis et al., 2017; Alonso-García et al., 2020; Ślipiko 
et al., 2020). Consequently, species once thought of 
as one taxon have been revealed to be groups of well-
differentiated molecular lineages.

Bryophyte cryptic taxa may occur allopatrically 
at a continental or regional scale, as exemplified 
by the genetic differentiation observed in Northern 
Hemisphere populations from the Amphi-Atlantic 
zone and Beringia (Hedenäs, 2012; Kyrkjeeide et al., 
2016b). In other cases, distinct lineages have sympatric 
distributions (Piñeiro et al., 2012; Kyrkjeeide et al., 
2016a). The latter situation may be more complex to 
describe because those lineages may have diverged 
sympatrically or allopatrically and then dispersed into 
other areas producing sympatric distributions. These 
patterns are strongly related to the historical factors that 
influenced the genetic divergence of cryptic taxa. In this 
regard, the climatic oscillations during the Quaternary 
are recognized to have affected the evolutionary and 
demographic history of organisms, notably for plants 
with northern distributions (Hewitt, 2004). Specifically, 
during the Last Glacial Maximum (LGM; 26.5–19 kya; 
Clark et al., 2009), the advance of ice sheets in North 
America and Europe restrained species distribution 
areas, causing population bottlenecks, local extinctions 
and isolation of populations (Abbott et al., 2000; 
Abbott & Brochmann, 2003; Westergaard et al., 2019). 
Like other plants, bryophyte populations survived 
in ice-free areas, in situ in microrefugia or under the 
ice sheet, and after the retreat of glaciers, species 
dispersed to deglaciated areas (Kyrkjeeide et al., 2014; 
Désamoré et al., 2016; Ledent et al., 2019). Hence, the 
demographic signatures of glaciations combined with 
cryptic speciation may result in intricated phylogenetic 
relationships (e.g. hybridization, admixture) that 
obscure the biogeographic history of northern cryptic 
taxa (Szövényi et al., 2008; Piñeiro et al., 2012; Stubbs 
et al., 2020).

Among bryophytes, the moss genus Racomitrium 
Brid. (s.l.) is widely distributed in both hemispheres 
and displays a complex phylogenetic history translated 
into many taxonomic generic changes (Ochyra & 
Bednarek-Ochyra, 2007; Larraín et al., 2013). In the 
genus, the species R. lanuginosum is distributed only 
in the Northern Hemisphere and is an emblematic 
plant of Arctic, sub-Arctic and alpine environments. 
This moss reproduces mainly by clonal growth forming 
extensive carpets and contributes to the nitrogen 
budget of the tundra due to its epiphytic N2-fixing 
bacteria (Tallis, 1958; Baddeley, Thompson & Lee, 
1994; Klarenberg et al., 2021). Early phytogeographic 
studies on R.  lanuginosum demonstrated slight 
morphological variation among populations in the 
Northern Hemisphere (Tallis, 1958; Vitt & Marsh, 1988; 
Ellis & Tallis, 2003). Recent molecular studies coupled 
with morphological examination in Scandinavian 
populations suggested the presence of three well-
differentiated molecular lineages based on the nuclear 
ribosomal ITS and the plastid genes rpl16 and trnG 
(Hedenäs, 2019, 2020a). These lineages are genetically 
differentiated but lack distinctive morphological traits 
supporting molecular results. On a global scale, it is 
unclear whether those cryptic taxa also occur across 
the entire distribution of R. lanuginosum or if this is 
a phenomenon specific to the Scandinavian peninsula.

Spatial genetic structure in bryophytes has been 
commonly investigated using isozymes (e.g. Boisselier-
Dubayle et al., 1995; Cronberg, Molau & Sonesson, 
1997; Werner & Guerra, 2004), DNA fingerprinting 
(e.g. Spagnuolo, Terracciano & Giordano, 2009; 
Hutsemékers et  al., 2010; Hassel, Gunnarsson 
& Gunnarsson, 2011; Korpelainen et  al., 2013; 
Hutsemékers, Hardy & Vanderpoorten, 2013; Shaw 
et al., 2014) and a few Sanger-generated markers (e.g. 
Grundmann et al., 2008; Hedenäs, 2010, 2020a; Stech 
& Quandt, 2014; Biersma et al., 2020). Nonetheless, 
those approaches may fail to resolve species complexes, 
recent expansions or shallow relationships due to 
the limited data (Piñeiro et al., 2012; Biersma et al., 
2018). High-throughput sequencing methods, such as 
genotyping-by-sequencing (GBS), outperform Sanger-
generated sequences by producing thousands of loci 
in non-model species (e.g. Westergaard et al., 2019; 
Pérez-Escobar et al., 2020; Alonso-García et al., 2021), 
rendering GBS and similar techniques more suitable for 
elucidating evolutionary histories. GBS is an emergent 
method applied in a few phylogeographical studies 
of bryophytes (Baughman et al., 2017; Lewis et al., 
2017; Alonso-García et al., 2020; Ledent et al., 2020). 
In addition, molecular approaches coupled with past 
species distribution models could help to shed light on 
the historical events that influenced the geographical 
distribution of cryptic taxa (Gavin et al., 2014).
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This research aims to determine whether 
R. lanuginosum comprises differentiated molecular 
taxa across its distribution range in the Northern 
Hemisphere. We tested whether populations inhabiting 
previously glaciated and ice-free areas during the LGM 
differed in patterns of genetic diversity. We used two 
molecular approaches: a conserved nuclear marker 
(ITS) to reconstruct the evolutionary timeframe and 
ancestral areas of the species; and the GBS method 
to infer the genetic structure and estimate the 
demographic history. Additionally, we complemented 
the demographic inference by estimating changes in 
the species distribution range through three periods: 
present, LGM, and Last Interglacial (LIG; c. 110 kya).

MATERIAL AND METHODS

Sampling and DNA extraction

Racomitrium lanuginosum specimens were obtained 
from herbaria ALA, CANM, FLAS, L, QFA, TRH, UBC 
and VT. In addition, fresh material was collected from 
Kuujjuarapik and Umiujaq in Hudson Bay, eastern 
Canada, in 2017 and 2019. Specimens were deposited 
in the QFA herbarium following the first author’s 
collection numbers and identified by the authors using 
regional keys. Samples from Central and Southern 
Europe were not available for the study to assess the 
genetic diversity and presence of glacial refugia in those 
regions. We included some samples of the congenerics 
R. pruinosum (Wilson) Müll.Hal. and R. geronticum 
Müll.Hal. A single shoot (gametophyte) per specimen 
was ground with liquid nitrogen resulting in a single 
genet per sample. DNA extraction was performed using 
the CTAB method (Murray & Thompson, 1980). DNA 
was used for both PCR and GBS but used different 
samples for each approach (see each type of analysis).

Sanger-based sequencing and phylogeographic 
analyses

The ITS region was amplified using primers 18SF 
and 26SR (Rydin, Pedersen & Friis, 2004). The primer 
sequences are 5′-GCT TGT CTC AAA GAT TAA GCC-
3′ for 18SF and 5′-ACT TCC ATG ACC ACC GTC CT-3′ 
for 26SR. PCRs were performed using a total volume 
of 25 µL: 0.1 µL TopTaq polymerase (Qiagen), 2.5 µL 
TopTaq buffer (Qiagen), 0.5 µL dNTP mix (10 mM, 
GeneDireX, Inc.), 1 µL of bovine serum albumin (New 
England BioLabs), 1 µL of each primer (2.5 mM), 
17.9 µL of ultra-pure distilled water (Invitrogen) and 
1 µL DNA.

ITS sequences were manually edited using Geneious 
v.2020.1.2 (Kearse et al., 2012). We produced 61 
sequences mainly from North American specimens. 
Additionally, 64 sequences from Scandinavian 

populations of R. lanuginosum (Hedenäs, 2020a) and 
20 sequences from different locations in Europe (Stech 
& Larraín, unpubl. data) were added to the dataset 
(see also Supporting Information, Table S1). Two 
sequences of the closely related species R. pruinosum 
were included as an outgroup following Larraín 
et al. (2013). One hundred and forty-seven sequences 
were aligned using Clustal Omega v.1.2.2. (Sievers 
& Higgins, 2014). We evaluated the best nucleotide 
substitution model for the alignment using the 
phangorn v.2.7.1 library (Schliep, 2011) in R v.3.6.3 
(R Core Team, 2017). We selected the GTRGAMMA+I 
model with the lowest value of the Akaike information 
criterion corresponding to 4137.920.

To estimate divergence times of R. lanuginosum, 
we conducted Bayesian analyses using BEAST 
v.1.10.4 and its complementary software (BEAUTi, 
Tracer & TreeAnnotator) (Drummond & Rambaut, 
2007) on the CIPRES Science Gateway 3.3 (Miller, 
Pfeiffe & Schwartz, 2010). We tested both the strict 
and the uncorrelated log-normal relaxed molecular 
clocks. Due to the absence of known R. lanuginosum 
fossils, we applied a general nucleotide substitution 
rate estimated for mosses (Laenen et al., 2014) with 
a mean of 4.45 × 10-4 substitutions/site/million years 
and a standard deviation of 1.77 × 10-6. We assessed 
convergence in Tracer and according to the ESS 
values. Convergence was achieved after 5 × 108 
generations. Thus, we performed analyses with 5 × 108 
generations, sampling every 25 000 generations and 
discarding 10% in each run. We followed Zaccara et al. 
(2020) to evaluate the best tree prior. We performed 
analyses under the strict and uncorrelated log-normal 
molecular clocks using Yule, birth-death, coalescent 
constant size and Bayesian Skyline tree priors. To 
evaluate the best model, we estimated the marginal 
likelihood estimate of each model through stepping-
stone sampling and path sampling with 150 path 
steps and one million iterations. According to Bayes 
factors, the model that better explained the data was 
the strict clock with a coalescent constant size prior 
tree (see also Supporting Information, Table S2). We 
performed two independent runs using the best model. 
We corroborated the BEAST phylogenetic tree using 
maximum likelihood. We estimated phylogenetic 
relationships using RAxML v.8.2.9 (Stamatakis, 2014) 
under the GTRGAMMA + I model with 100 bootstrap 
replicates. All phylogenetic trees were generated in 
FigTree v.1.4.4 (Rambaut, 2018).

Ancestral area reconstruction was conducted in 
RASP v1.1.7 (Yu et al., 2015) using the trees produced 
in BEAST. We classified the samples into Alaska, 
eastern North America, Europe and Asia to infer 
the ancestral areas of each clade (see Supporting 
Information, Table S1). Then, we removed the outgroup 
and compared the fit of six different models to our 
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data using BioGeoBEARS: DEC, DEC+J, DIVALIKE, 
DIVALIKE+J, BAYEAREALIKE, BAYEAREALIKE+J. 
We selected the DIVALIKE+J model based on the 
Akaike information criterion corrected for small 
samples.

Geographical groups were defined according to 
the spatial distribution of the samples to compute 
population genetic statistics. We randomly selected 
eight samples per geographical group to avoid bias 
due to different sample sizes. For each group, we 
calculated the number of polymorphic sites and 
haplotypes, haplotype diversity, nucleotide diversity 
and demographic statistics, including Fu & Li’s D 
and Tajima’s D in DnaSP software v.6.12.03 (Rozas 
et al., 2017). Finally, we estimated the same summary 
statistics for each group, but using all samples 
(different sample sizes per group).

GBS data processing

Library preparation and sequencing
Library preparation was carried out using a GBS 
double-digested approach. We used the cutting 
enzymes PstI and MspI to improve the number of 
restriction sites and fragment size to identify single 
nucleotide polymorphisms (SNPs) (Sonah et al., 2013). 
We used a volume of 10 µL with DNA concentrations 
of c. 20 ng/µL per sample. Libraries were sequenced in 
an Ion Torrent system producing single-end sequences 
at the Genomic Analysis Platform of the Institute of 
Integrative Biology and Systems of Laval University 
(Quebec, Canada). We sequenced 168 samples in two 
plates. The first plate produced 67 512 653 reads and 
the second one yielded 151 484 471 reads. Additionally, 
we sequenced 16 samples of R. lanuginosum from 
northern Europe (Svalbard and Jan Mayen) and the 
congeneric R. geronticum. We used the same cutting 
enzymes, but sequencing was performed on an Illumina 
HiSeq 2000 system producing single-end reads at the 
Leibniz Institute of Plant Genetics and Crop Plant 
Research IPK, Gatersleben (Gatersleben, Germany). 
This run produced 16 210 221 reads. One hundred and 
eighty-four samples were processed in this study.

Raw read processing
Per base sequence quality of raw reads was 
checked using FastQC v.0.11.8 (Andrews, 2010). We 
standardized reads to a length of 90 bp based on read 
length distribution. Next, sequences were cleaned, 
trimmed and demultiplexed using sample-specific 
barcodes in the process_radtags program of Stacks 
v.2.3 (Catchen et al., 2013). A second quality check was 
performed on demultiplexed sequences to validate the 
processed data. We applied an alternative approach 

using Trimmomatic v.0.36 (Bolger, Lohse & Usadel, 
2014) to cut and clean reads before process_radtags. 
However, the number of processed reads was lower 
than the standard processed reads; hence, we did not 
proceed with further analyses of this dataset. We used 
three different approaches to construct loci: de novo; 
reference-based using BWA; and Bowtie2 aligners.

De novo assembly
To assemble loci de novo, we performed tests in denovo_
map.pl program of Stacks to determine the optimized 
parameter combination. We selected 12 samples that 
best represented read coverage and phylogenetic 
groups based on preliminary ITS analyses (see also 
Supporting Information, Table S3).

We applied the -r80 loci method proposed by Paris, 
Stevens & Catchen (2017) to select the parameter 
combination that maximizes the number of SNPs 
shared by at least 80% of individuals in a population 
(-r 80). This method consists of varying values for the 
Stacks parameters -m, -n and -M. First, we varied -m, 
a parameter that constructs stacks on the basis of 
identical matching reads. We then tested the values 
-m ranged from m = 1 to m = 6 with the rest of the 
main parameters held constant (M = 3 and n = 1). We 
proceeded to test -M, which represents the minimum 
number of different nucleotides allowed to combine 
stacks into a locus. We iterated -M from M = 1 to M = 4 
(constant values m = 2 and n = 1). The last parameter 
was -n, which defines the number of mismatches 
between each sample and the locus catalogue to merge 
them into a single locus (i.e. fixed alleles in a population 
representing an alternative allele compared to other 
populations). This parameter was tested from n = 1 to 
n = 6 (constant values m = 2, M = 2). We examined the 
number of loci and SNPs recovered in each iteration for 
each parameter. To define a threshold for parameter 
selection, we only considered those values in which the 
number of loci and SNPs reach a relatively constant 
increase at -R 80. We tested two candidate parameter 
combinations m = 3, M = 1 and n = 3 and m = 2, M = 1 
and n = 3. The final parameter candidates consisted 
of a trade-off between sequence coverage and number 
of loci and SNPs. We finally selected m = 3, M = 1 and 
n = 3 as the optimized parameter combination to build 
loci de novo.

De novo loci were built using Stacks. For the first 
step, ustacks, we input -m 3 and -M 1. For cstacks we 
used -n 3 and for gstacks we created a catalogue using 
117 samples out of 184 to discard uninformative loci 
(loci present in a few samples). The rest of the pipeline 
components were run with default settings using a 
population map where each sample represented a 
population (sample-population map).
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Mapping to a reference
In  the  absence  o f  an  avai lab le  genome o f 
R.  lanuginosum, we selected the transcriptomes 
of R. elongatum Ehrh. ex Frisvoll (ID: ABCD) and 
R. varium (Mitt.) A.Jaeger (ID: RDOO) from the 1000 
plants initiative (Carpenter et al., 2019; Leebens-
Mack et al., 2019) to align the reads. We merged the 
two transcriptomes into one single reference file to 
improve the number of aligned reads. Individual 
output files produced by process_radtags were aligned 
to the reference file using two aligners, BWA v.0.7.17 
(Li & Durbin, 2009) and Bowtie2 v.2.3.4.1 (Langmead 
& Salzberg, 2012). The mem command and default 
options were employed for BWA, which conducts a 
local alignment starting with exact local matches. The 
second alignment was performed on Bowtie2 with the 
--very-sensitive option, and one mismatched allowed in 
seed alignment (-N 1). To have compatible input files 
for Stacks, we transformed the alignment from SAM 
to BAM format using Samtools v.1.8 (Li et al., 2009). 
A sample-population map was used as input for the 
subsequent pipeline steps. We ran the gstacks program 
with default settings to build loci and identify SNPs 
for both approaches.

Genotype calling for de novo and 
reference-based data
For each approach (de novo, reference-based BWA 
and Bowtie2), we ran populations program using a 
sample-population map. A first genotype calling was 
done without a filter in the number of loci shared 
among samples (using -R instead of -r because each 
sample represented a population). Then, the number 
of generated loci and the percentage of missing data 
for each sample were recorded. Missing data were 
evaluated in adegenet v.2.0.2 package (Jombart, 2008) 
in R, transforming vcf files into genind and genlight 
formats. We filtered samples with high levels of missing 
data (> 95%) to create a preliminary good-quality 
dataset consisting of 130 samples. Next, the Stacks 
populations program was run for each approach, 
keeping loci shared by at least 80% of samples (-R 80) 
with no heterozygotes due to the haploid condition of 
moss gametophytes (--max-obs-het 0) and a minimum 
allele frequency of 0.05 (--min-maf); however, we did 
not find SNPs for the three approaches using this 
stringent filter. Then, we changed the filter to -R 
40, resulting in different amounts of loci, SNPs and 
missing data per sample. This information was used to 
compare the three approaches. The de novo approach 
yielded a lower number of SNPs than the reference-
based approaches, and the BWA approach recovered 
the highest number of SNPs (Table 1). Therefore, BWA 
approach was selected for further analysis.

We assessed the effect of -R 40 and -R 20 filters for 
the BWA approach. Filtered datasets represented a 
trade-off between the number of sites (loci and SNPs) 
and the quality of the data (missing data per sample). 
The -R 40 dataset contained fewer SNPs (411) of high 
quality (< 60% missing data), and -R 20 produced more 
SNPs (844) but more missing data (> 60%) (for detailed 
BWA results see also Supporting Information, Table 
S4). It has been shown that SNPs with high-missing 
data (> 80%) yield better-supported phylogenetic trees 
than few good-quality SNPs (e.g. Tripp et al., 2017). 
Hence, we selected the -R 20 dataset to conduct the 
analyses. Finally, we constrained the dataset to 
a group of 127 samples, including the congeneric 
R. pruinosum and, for some analyses, R. geronticum. 
None of the 16 Illumina HiSeq sequenced samples 
passed the filters and were not included in the 
analyses (see also Supporting Information, Table S4). 
Different output files were produced in populations 
program for subsequent analysis. The -R 20 dataset 
was mainly used to investigate the phylogeography of 
R. lanuginosum.

GBS analyses

Phylogenetic analyses
To estimate maximum-likelihood trees, we used -R 40 
and -R 20 datasets employing unliked SNPs (–write-
single-snp) in populations program of Stacks (i.e. 
one SNP per locus). Unlinked SNPs have been used 
in phylogenetic inference because they reduce linked 
loci accounting for independent evolutionary histories 
(Grewe et al., 2017, 2018; Alonso-García et al., 2020, 
2021). The unlinked-SNP datasets resulted in 324 and 
608 SNPs for -R 40 and -R 20, respectively. Maximum-
likelihood trees were inferred using RAxML. Runs 
were performed using the GTR + Γmodel with 100 
bootstrap replicates and the ascertainment bias option 
(--asc-corr = lewis) that accounts for the variability 
of all positions. Phylogenetic trees were rooted with 
R. pruinosum.

Table 1.  Summary of the number of SNPs recovered in 
Racomitrium lanuginosum using two population filters 
(-R) for three different approaches: de novo, reference-
based using BWA; and Bowtie2 aligners. The BWA ap-
proach produced more SNPs using both population filters

 Number of SNPs

Approach -R 40 -R 20 

de novo 23 757
BWA 465 844
Bowtie2 333 786
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We only focused on the -R 20 dataset for the 
following analyses due to there being more recovered 
SNPs. First, a phylogenetic network was constructed 
to assess the relationships of individuals under 
a framework that consider events that may lead 
to reticulate relationships (e.g. admixture and 
hybridization). We used a matrix of 4620 loci shared 
by at least 20% of the 126 samples (-R 20). We built 
the network in SplitsTree v.4.16.1 (Huson & Bryant, 
2006) using the NeighborNet method with uncorrected 
P distances.

To estimate a coalescent-based tree that accounts for 
loci incongruence, we used SVDquartets v.1.0 (Chifman 
& Kubatko, 2014). This software handles multilocus 
data to infer species and lineage level phylogenetic 
trees under a coalescent model and performs well when 
using loci composed of a small number of sites (Chou 
et al., 2015). We used the same matrix recovered from 
the -R 20 dataset to conduct this analysis. We inferred 
a lineage tree using SVDquartets in PAUP v.4.0a 
(Swofford, 2003) under the multispecies coalescent 
model without a partition of samples and evaluating 
all possible quartets with 100 bootstraps replicates.

Genetic structure analyses
To detect genetic structure in R. lanuginosum we used 
principal component analyses (PCA) and a haplotype 
co-ancestry matrix. We included the congeneric 
R. geronticum only for these analyses. Dimensionality-
reduction methods have been applied to investigate 
population structure and have proved to be adequate 
for datasets with high levels of missing data as a 
complementary approach (Grewe et al., 2017; Alonso-
García et al., 2021). We conducted preliminary PCA 
using both -R 20 and -R 40 datasets, and the results 
were similar; thus, we only kept the -R 20 dataset due 
to the better resolution of genetic groups. We extracted 
SNPs from loci shared by at least 20% of 127 samples 
(-R 20), resulting in a vcf file with 844 SNPs. The vcf 
file was transformed into genind and genlight formats 
to perform PCA using adegenet.

A haplotype co-ancestry matrix of the nearest 
neighbour was constructed with the software 
fineRADstructure v.1.0 (Malinsky et  al., 2018). 
Suitable haplotype input data (file.fineRADpainter) 
were generated in populations program of Stacks from 
the same -R 20 dataset as in the PCA. We reordered 
loci according to linkage disequilibrium using the 
sampleLD.R script. The co-ancestry matrix was 
estimated and visualized in the finestructureGUI, and 
samples were grouped according to co-ancestry levels. 
Each sample was labelled according to the genetic 
group membership resulting from phylogenetic 
analyses to compare clustering methods.

Genetic diversity based on recovered loci was 
estimated for the four genetic groups and ten 
geographic groups. Geographical groups were 
delimited according to the co-ancestry levels and 
sample geographical distribution. Summary statistics 
such as nucleotide diversity, haplotype diversity, 
private alleles and pairwise fixation index (FST) among 
groups were calculated in populations program from 
Stacks (-r 60, --max-obs-het 0, --min-maf 0.05) using 
population maps based on genetic and geographical 
groups (see also Supporting Information, Table S4). We 
applied a sample-size correction using eight samples 
per group to perform these estimations.

We inferred the relationships of geographical 
groups and evaluated the presence of migration 
among populations using allele frequencies in 
TreeMix v.1.13 (Pickrell & Pritchard, 2012). This 
analysis estimates population relationships based 
on allele frequencies (SNPs). The software assumes 
that SNPs are unlinked or account for linkage 
disequilibrium by defining blocks of SNPs (-k) for 
resampling. The results are displayed as a maximum-
likelihood graph of population splits where branch 
length represents the amount of genetic drift among 
populations. Then, the covariance matrix is analysed 
to select pairs of populations that do not fit well 
with the model, and the software tries to include 
migration edges that improve the fitting of the model 
(Pickrell & Pritchard, 2012). TreeMix performs better 
with low missing data per population; thus, a more 
stringent population filter (-r 60) and a popmap 
based on geographic groups were used to generate 
the input file in Stacks. The -r 60 and unlinked SNPs 
(-write-single-snps) filters applied on 124 samples of 
R. lanuginosum resulted in 406 SNPs. We selected the 
Alaska Peninsula population to root the graph (-root) 
based on co-ancestry levels and FST group pairwise 
comparisons. We iterated -m from 0 to 10 with ten 
bootstrap replicates, each with a constant window 
size of -k 10 and the -noss option to turn off sampling 
correction. We estimated the optimized number of 
migrations among populations by analysing the 
results of the iterations. We used OptM v.0.1.5, which 
infers the most likely value for -m using the TreeMix 
output (Fitak, 2021). The estimation is based on the 
second-order rate of change (Δm) of the composite 
likelihood L(m), which is similar to the ΔK method 
used for detecting the number of genetic clusters 
in Structure software (Evanno, Regnaut & Goudet, 
2005). The results of OptM suggested that one 
migration edge optimize the fit of the graph model; 
however, this value did not reach the 99.8% variance 
explained by the model considered to confidently infer 
migration edges (Pickrell & Pritchard, 2012; Fitak, 
2021) (see also Supporting Information, Fig. S1).
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Species distribution modelling

Data compilation
To assess range distribution shifts of R. lanuginosum 
during the Quaternary glaciations, we modelled its 
current, LGM and LIG distribution ranges. Occurrence 
records of R. lanuginosum were downloaded from 
the Global Biodiversity Information Facility (GBIF) 
database and complemented with samples used in this 
study. A total of 28 205 records were obtained from 
the GBIF portal. Raw data were manually filtered in 
the following order: (1) removal of occurrence records 
from the Southern Hemisphere currently recognized 
as R. geronticum and R. pruinosum (26 359); (2) 
occurrence records acquired from human observations, 
fossils, unknown sources, material samples and 
literature were excluded (7855); (3) occurrence records 
identified as species synonyms were kept (7817) 
and (4) occurrence records without coordinates were 
excluded (7797).

Manual filtered data consisting of 7797 records were 
cleaned using CoordinateCleaner v.2.0 library (Zizka 
et al., 2019) in R. We first removed records with no 
coordinates (including 0,0). Then, default tests were 
implemented to clean the data (‘capitals’, ‘centroids’, 
‘equal’, ‘gbif ’, ‘institutions’, ‘zeros’, ‘countries’, ‘seas’). 
A second cleaning was conducted to discard records 
labelled as temporal outliers, with low coordinate 
precision, outside the distribution range (> 30 decimal 
latitude), older than 1945 and duplicates. A cleaned 
data set consisting of 2421 occurrences was generated 
(see also Supporting Information, Fig. S2).

Climatic variables were obtained from the PaleoClim 
web-site (Brown et al., 2018). We downloaded 19 
standard bioclimatic variables in a spatial resolution 
of 10 arc-minutes (c. 20 km) for all periods. Present 
bioclimatic data was based on Karger et al. (2017). 
Data for the LGM followed Karger et al. (2021) from 
the CHELSA-TraCE21k algorithm in 100-year time 
steps from the last 21 kya. Finally, we used the LIG 
bioclimatic variables according to Otto-Bliesner et al. 
(2006) and based on climate simulations starting from 
c. 130 kya.

Distribution modelling
SDMtoolbox v.2.4 (Brown, 2014) was used to prepare the 
input data for distribution modelling. First, we created 
a layer containing only the known R. lanuginosum 
distribution range in the Northern Hemisphere to 
delimitate the area for model prediction. According 
to Collart et al. (2021), the distribution model for 
R. lanuginosum as one species in Sweden performed 
better than the separate cryptic species models. 
Therefore, we did not produce individual genetic group 
distribution models due to the small dataset and the 

uncertain niche differentiation among genetic groups. 
Second, we performed pairwise correlation analyses 
of environmental variables to discard autocorrelated 
ones. As a result, five independent environmental 
variables were recovered from the analyses and 
used in species distribution models: bio_1: annual 
mean temperature in °C; bio_2: mean diurnal range 
in °C; bio_4: temperature seasonality, bio_8: mean 
temperature of the wettest quarter in °C and bio_15: 
precipitation seasonality as a coefficient of variation. 
Then, we reduced spatial autocorrelation of occurrences 
by filtering them into two classes: a maximum area 
of 50 km2 and a minimum of 20 km2 for areas with 
environmental variation. Finally, we created a bias 
file to optimize the selection of occurrences and 
environmental layer points using a buffered minimum 
convex polygon based on observed localities.

The potential distribution ranges of R. lanuginosum 
in the current time and projections into the LGM 
and LIG were modelled using MaxEnt v.3.4 (Phillips, 
Anderson & Schapire, 2006) and SDMtoolbox. We 
performed geographically structured k-fold cross-
validation for the models (k = 3). Automatic selection 
of the best model consisted of running models using 
eight regularization multipliers (0.5, 1, 1.5, 2, 2.5, 3, 4, 
5) and five model classes to evaluate the performance 
in terms of omission rate, the area under the curve 
and model complexity. The best model was the linear 
and quadratic with a regularization parameter of five. 
Finally, we used the output files to generate potential 
distribution maps representing expected suitable 
areas for R.  lanuginosum using the 10-percentile 
training presence as a threshold for all projections: 
current, LGM and LIG.

RESULTS

Phylogeography and molecular dating based 
on ITS

The alignment of the 147 ITS sequences included 
715 bp with 110 indels (93 excluding the outgroup) and 
41 (39) variable sites, of which 37 (35) were potentially 
parsimony-informative sites. Bayesian phylogenetic 
analyses of ITS sequences recovered three clades 
coded as blue, orange and green (Fig. 1), previously 
identified as cryptic taxa. The tree topology based on 
maximum likelihood is consistent with the Bayesian 
inference (see Supporting Information, Fig. S3). There 
is little spatial genetic structure, with some samples 
from North America being closely related to European 
specimens. The blue clade is formed by R. lanuginosum 
samples inhabiting Arctic environments such as 
north-eastern Canada, northern Alaska and the 
Scandinavian Mountains (46 samples). The green 
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(39 samples) and orange (60 samples) clades are 
widely distributed in the sub-Arctic, with the former 
dominating the Alaska Peninsula (see also Supporting 
Information, Fig. S4). Intra-clade relationships were 
not completely resolved using ITS, probably because of 
the low marker resolution power.

Genetic diversity estimates of ten geographical 
groups showed that the Swedish northern mountain 
range, northern Quebec and northern Norway 
populations have the highest haplotype and nucleotide 
diversity (Table 2). Fu & Li and Tajima’s D suggested 
that the Alaska Peninsula, eastern Quebec, Western 
Quebec and the Swedish middle lowlands have 
decreasing population sizes. The rest of demographic 
estimations were not significant, probably due to 
the lack of resolution of the marker (but see also 
Supporting Information, Table S5). The overall genetic 
diversity of R. lanuginosum resulted in 12 haplotypes 
with a mean haplotype diversity of 0.809 ± 0.018, a 
nucleotide diversity of 0.0214 ± 0.0005 and a positive 
Tajima’s D value (see also Supporting Information, 
Table S5).

Molecular dating using a known nuclear substitution 
rate for the ITS region indicated that R. lanuginosum 
originated c. 5.3 Mya [95% high posterior density 
(HPD) 6.7–3.8 Mya; Fig. 1]. The three clades are well 
supported, with posterior probabilities over 0.98. 
The blue clade diverged 5.1 Mya (95% HDP 6.5–3.7 

Mya). The green and orange clades separated 2.9 
Mya (95% HDP 3.8–1.95 Mya) (see also Supporting 
Information, Table S6). Ancestral area reconstructions 
suggested a Northern European origin for the species  
(Fig. 1). A subclade of the orange clade was proposed as 
originating in Alaska.

Genetic structure based on SNP data

The maximum-likelihood tree of unlinked SNPs 
based on -R 20 recovered only three clades with 
strong bootstrap support (> 90) (see also Supporting 
Information, Fig. S5). The phylogenetic tree based 
on the -R 40 dataset had lower branch support than 
the -R 20 tree (see also Supporting Information, Fig. 
S6). There was a lack of resolution at the intraclade 
level, probably caused by high levels of missing data 
and/or incomplete lineage sorting. The unlinked-
SNP phylogenetic tree is congruent with the ITS 
tree topology; however, the main difference is a 
well-supported clade consisting of samples from the 
Alaskan Peninsula and the Scandinavian Mountains. 
The phylogenetic network based on concatenated loci 
revealed four distinct molecular lineages: hereafter A, 
B, C and D, referred to as SNP data (Fig. 2). Notably, 
group B is the most differentiated and is represented 
by formerly Alaskan samples in the orange clade 
for ITS.

2.9 Ma
(3.8-1.95)

5.1 Ma
(6.5-3.97)

5.3 Ma
(6.7-3.98)

6 5 4 3 2 1 0

R. pruinosum

E

E

E

A

E

NA

E

E

1

1

0.94

1

1

1

1

0.94

0.97

1
E

Figure 1.  Maximum credibility tree of Racomitrium lanuginosum from BEAST showing mean divergence times and 95% 
height posterior densities in parentheses. The time scale is in Mya (millions of years ago). The parameters used for this 
analysis correspond to the best model (see Materials and Methods). Clades are colour-coded (blue, orange and green) with 
posterior probabilities > 0.90. The following legends represent the ancestral areas for each node inferred by the RASP 
analyses: E = Europe, NA = Eastern North America, Al = Alaska.
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The coalescent-based phylogenetic analysis 
(SVDquartets) of concatenated loci resulted in 10 009 
125 quartets, of which 68.61% were compatible, 31.38% 
were incompatible and five were discarded. The lineage 
tree topology was similar to the maximum-likelihood 
phylogenetic tree but with weaker bootstrap support 
(see also Supporting Information, Fig. S7). Some group 
A members were recovered as monophyletic subgroups 
intermixed with group B. Group C had low support (< 
70), and D was again recovered as monophyletic.

A PCA based on SNP data (-R 20) supported the four 
genetic groups identified in the phylogenetic network, 
with C and D being closely related and B representing 
the most divergent group in R. lanuginosum (Fig. 3). 
Some samples across the phylogenetic network and 
PCA plot had ambiguous membership. Nonetheless, 
the haplotype co-ancestry matrix (-R 20) identified the 
genetic groups of these samples and further highlighted 
the genetic structure of R. lanuginosum (Fig. 4). The 
equivalence of ITS clades and fineRAD groups for each 
sample is presented in the co-ancestry matrix. The 
distribution of genetic groups is sympatric, with groups 
A and D mainly distributed in North America and 
Greenland, whereas B and C occur in North America 
and Europe (Fig. 5). Some samples of group A have an 
estimated co-ancestry level of five with groups C and 
D. Group B is well-differentiated but had a co-ancestry 
level of five with some Scandinavian samples of group 
D. These results are supported by the FST comparisons 
among genetic groups, with group B having the highest 
FST values indicative of a divergent population (see 
also Supporting Information, Table S7).

Summary statistics of the ten geographical groups 
reflect the spatial genetic diversity (Table 3; see 

Table 2.  Genetic diversity and demographic statistics of Racomitrium lanuginosum geographical groups with corrected 
sample sizes based on ITS marker. Eight randomly selected individuals per group were used to perform the analysis. 
Populations with fewer than eight individuals were discarded. For each group, the number of samples, polymorphic sites 
(S), number of haplotypes (h), haplotype (Hd) and nucleotide (π) diversity with their respective standard deviations (SD) 
and Fu & Li’s D and Tajima’s D statistics are presented. The Swedish northern Mountain and northern Norway popula-
tions have the highest haplotype and nucleotide diversity

Geographic group S h Hd SD Hd π SD π Fu & Li’s D Tajima’s D 

Alaska Peninsula 18 2 0.571 0.094 0.0162 0.0027 1.5771 * 2.4929 **
Eastern Quebec 28 3 0.464 0.2 0.0181 0.0072 1.4833 * 0.5006
Western Quebec 36 4 0.75 0.139 0.0215 0.0054 1.5269 * 1.0185
Middle Lowland-Sweden 18 3 0.75 0.096 0.0141 0.0031 1.5771 * 1.9337
Middle Mountain-Sweden 19 4 0.75 0.139 0.0142 0.0032 1.2045 1.6149
Northern Mountain-Sweden 39 4 0.821 0.101 0.0282 0.0039 0.8214 1.0066
Northern Norway 36 6 0.929 0.084 0.0271 0.0059 1.2426 1.3102
Northern Quebec 36 5 0.857 0.108 0.0231 0.0048 0.2680 0.2167
Southern Sweden 19 4 0.75 0.139 0.0142 0.0032 1.2045 1.6149
Western Europe 19 4 0.786 0.113 0.0142 0.0030 1.2045 1.6149

* p < 0.05; ** p < 0.01

Figure 2.  Phylogenetic network based on uncorrected 
P distances of 4620 concatenated loci shared by at least 
20% of 126 samples (-R 20) of Racomitrium lanuginosum 
and one of R. pruinosum as the outgroup. Colour codes are 
analogous to ITS phylogenetic analyses, but with genetic 
group B in red.
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also Supporting Information Table S8). Haplotype 
and nucleotide diversities are higher in the Alaska 
Peninsula, followed by the Scandinavian Mountains 
and Western Quebec (see also Supporting Information 
Fig. S8). Polymorphic sites were higher among than 
within groups. The FST pairwise comparisons suggest 
that the Scandinavian Lowlands and Ontario are 
more differentiated from the rest of R. lanuginosum 
populations (see also Supporting Information Table S9).

Relationships among geographic groups inferred 
by TreeMix resulted in an inconsistent graph 
topology across replicates. However, the Scandinavian 
Mountains population always appeared at the base 
of the graph. The rest of populations were clustered, 
with Ontario being the most differentiated. Quebec 
populations (northern, western and eastern) were 
more related to the Scandinavian Lowlands and 

Greenland populations. The evaluation of the number 
of migration edges indicated that one migration 
edge better explains the population graph with two 
recurrent scenarios (5/10 replicates): migration from 
the Alaska Peninsula or an ancient hypothetical North 
American population to Western Quebec. Two main 
topologies resulted from the ten TreeMix replicates 
and represented the scenarios mentioned above (see 
also Supporting Information, Fig. S9).

Present and past distribution ranges

The present species distribution agrees with the 
known sub-Arctic and Arctic range of the species (see 
also Supporting Information, Fig. S10). The model 
accuracy result using the area under the receiver 
operating characteristic curve was AUC = 0.78. Past 

Figure 3.  Principal component analysis based on 844 SNPs shared by at least 20% of 127 samples (-R 20) of Racomitrium 
lanuginosum and the outgroup (R. geronticum and R. pruinosum). Ellipses represent the 95% confidence intervals, and the 
group colour code is the same as in the phylogenetic network. Group B is the most genetically differentiated.
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distribution models of R. lanuginosum suggest a loss of 
suitable habitats during the LGM compared with the 
present and the LIG. The LGM model indicates that 
the most suitable areas for R. lanuginosum for that 
period were the coastline of western North America 
and Western Europe (see also Supporting Information, 

Fig. S11). The LIG model showed fewer habitats than 
the present model but a wider range than the LGM 
(see also Supporting Information, Fig. S12). The 
current potential spatial distribution is broader than 
at the LGM, indicating a species range expansion after 
the retreat of glaciers.

Figure 4.  Co-ancestry matrix of Racomitrium lanuginosum based on 844 SNPs at -R 20 of 127 samples. On the right, the 
colour scale ranges from yellow, which indicates a low level of shared co-ancestry between samples, to blue, indicating a 
high level of co-ancestry. The left and top axes include trees showing the relationships among groups and small squares 
corresponding to each sample with colours representing the ITS clades (blue, orange and green) as a comparison. The four 
genetic groups recovered from the co-ancestry matrix are highlighted at the bottom (A, B, C, D). Samples of the same genetic 
group shared more co-ancestry than samples of different groups. Group B has the highest level of co-ancestry, indicating 
strong genetic differentiation.
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Table 3.  Genetic summary statistics of ten Racomitrium lanuginosum geographic groups with corrected sample size based 
on GBS data. Five randomly selected individuals per group were used to perform the analysis. These results are based on 
50 samples and loci shared by at least 60% of individuals per geographical area (-r 60). Filters recovered 4707 loci and 1196 
SNPs. For each geographical group, the mean number of samples recorded per loci, the number of total, private and variant 
sites, single nucleotide polymorphisms (SNPs) and the percentage of polymorphic loci (Percentage PL) are presented. In 
addition, the mean haplotype (Hd) and nucleotide (π) diversity and their standard errors (SE) were estimated for each 
group using SNPs. The Scandinavian Mountains and the Alaska Peninsula have the highest genetic diversity

Geographic group Samples 
per loci 

Total 
sites 

Private 
sites 

Variant 
sites 

SNPs Percentage 
PL 

Hd SE Hd π SE π 

Alaska Peninsula 4.40 301004 78 739 413 0.14 0.2526 0.0084 0.2878 0.0096
Alaska Mainland 4.51 297942 24 684 167 0.06 0.0980 0.0067 0.1119 0.0077
Ontario 4.57 324082 26 675 184 0.06 0.1001 0.0064 0.1150 0.0074
Northern Quebec 4.51 273251 18 585 198 0.07 0.1369 0.0080 0.1581 0.0093
Nunavut 4.57 316122 54 794 265 0.08 0.1351 0.0069 0.1542 0.0079
Western Quebec 4.62 363098 73 852 415 0.11 0.1974 0.0071 0.2263 0.0082
Eastern Quebec 4.41 281586 4 532 216 0.08 0.1689 0.0090 0.1936 0.0104
Greenland 4.39 275072 14 601 266 0.10 0.1844 0.0086 0.2121 0.0100
Scandinavian Lowlands 4.62 300052 24 681 135 0.04 0.0824 0.0065 0.0938 0.0074
Scandinavian 

Mountains
4.39 301237 25 606 360 0.12 0.2573 0.0088 0.2959 0.0102

Figure 5.  Geographical distribution map of Racomitrium lanuginosum genetic groups recovered from SNP-based analyses. 
Group distribution patterns are similar to ITS clades, but group B is represented in southern Alaska (the Alaska Peninsula) 
and the Scandinavian Mountains. Genetic groups have a sympatric distribution in the Northern Hemisphere.
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DISCUSSION

T h e  r e s u l t s  s u p p o r t  t h e  h y p o t h e s i s  t h a t 
R. lanuginosum comprised differentiated molecular 
lineages distributed sympatrically in the Northern 
Hemisphere. The populations inhabiting ice-free areas 
during the LGM had higher genetic diversity than 
those previously located under the ice sheet. Species 
distribution models suggested a range contraction 
during the LGM. In addition, we found evidence of 
long-distance dispersal and post-glacial expansion. 
Regarding the GBS data, the analyses performed well 
using loci with high levels of missing data to infer 
phylogenetic relationships, as previously highlighted 
in other studies (Lewis et al., 2017; Tripp et al., 2017; 
Alonso-García et al., 2020).

Cryptic taxa and their spatial distribution

The ITS marker resolved the deep phylogenetic 
relationships of groups, and SNP data helped define 
the fine genetic structure. The molecular dating based 
on ITS estimated that the ancestor of R. lanuginosum 
originated during the Late Miocene and Early 
Pliocene, the onset of changes from a warm to a cool 
climate that reached its coldest point during the 
Pleistocene (De Schepper et al., 2014; Willeit et al., 
2019). These analyses remain conservative due to the 
lack of precisely dated fossils and a single molecular 
marker, but they provide a suitable proxy for lineage 
divergence as exemplified in the globally distributed 
moss Bryum argenteum Hedw. (Zaccara et al., 2020). 
The divergence between clade A and the other clades is 
similar to the congeneric R. pruinosum. This result is 
supported by phylogenetic trees and the NeighborNet 
network, which points to a well-differentiated and 
relatively ancient molecular lineage. Hedenäs 
(2020a) also reported three lineages in Scandinavian 
populations of R. lanuginosum as differentiated from 
each other as from the outgroups R. pruinosum and 
R. geronticum. They were thus interpreted as cryptic 
taxa. In bryophytes, recognition of cryptic species in 
recent research has been conducted using multilocus 
molecular phylogenies (e.g. McDaniel & Shaw, 2003; 
Hedenäs, 2018) and complete organellar genomes 
(Myszczyński et al., 2017; Ślipiko et al., 2020).

The genetic structure analyses of R. lanuginosum 
resolved three clades based on ITS and four genetic 
groups using SNP data. These results confirm that 
R. lanuginosum comprises distinct molecular lineages 
across the Northern Hemisphere. The three ITS clades 
found in this study are similar to the cryptic species 
proposed by Hedenäs (2020a) in R. lanuginosum of 
Scandinavia, with one restricted to the mountain 
range (L3 = blue) and the other two widely distributed 
in lowlands (L1 and L2 = orange and green; see also 

Supporting Information, Fig. S4). The main difference 
between ITS and SNP-based phylogenetic trees was 
the recovery of group B, only distributed in the Alaskan 
Peninsula and northern Scandinavia. The haplotype 
10 of the ITS orange clade corresponds to the SNP-
based group B (see also Supporting Information, Table 
S1). As suggested by the SVDquartets results, the 
incongruent position of group B may be caused by the 
retention of ancient polymorphisms.

The four R.  lanuginosum genetic groups are 
also supported by the phylogenetic network, PCA, 
coalescent-based analysis, co-ancestry matrix and 
FST indexes. Particularly, genetic groups were not 
recovered as monophyletic in the phylogenetic network 
suggesting cryptic molecular taxa. Most genetic groups 
have sympatric distribution in eastern North America 
and Europe. The occurrence of sympatric molecular 
lineages in the Northern Hemisphere, particularly the 
North Atlantic, is a widespread phenomenon among 
mosses (Kyrkjeeide et al., 2016a; Lewis et al., 2017; 
Hedenäs, Kuznetsova & Ignatov, 2020). Long-distance 
dispersal in R. lanuginosum could be an infrequent 
event due to the rare production of sporophytes. 
However, phylogenetic analyses, ancestral area 
reconstructions and TreeMix graphs revealed 
potential transatlantic dispersal from North America 
to Europe. Groups A and B are mainly distributed in 
Arctic regions, whereas C and D are widespread in 
the sub-Arctic and some Arctic localities. Accordingly, 
previous distribution models performed for the 
three R. lanuginosum cryptic taxa in Scandinavia 
differentiated one lineage with suitable mountain 
habitats and the other two in lower elevations (Collart 
et al., 2021). The geographical distribution of group 
A in Arctic environments and groups C and D in the 
sub-Arctic may support the hypothesis of similar 
morphology but differential physiological responses 
of cryptic taxa to the environment. In addition, a 
thorough morphological examination of the recovered 
molecular taxa could provide critical characters to 
differentiate them.

Post-glacial demographic inference

The climactic events of the Quaternary affected 
the demographic history of R. lanuginosum, but did 
not seem to be directly related to the divergence 
of molecular lineages. Nucleotide and haplotype 
diversity within groups, based on both ITS and SNPs, 
agreed with estimates of divergence times. The ITS 
blue clade has higher haplotype and nucleotide 
diversity (Table 2) and diverged 5.1 Mya (95% HPD 
6.5–3.97). The ITS marker failed to discriminate group 
B as an independent clade, and it was clustered in the 
orange clade as an Alaskan sub-clade. In addition, 
the northern Scandinavian populations have higher 
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genetic diversity and more haplotypes. According to 
demographic statistics, the Alaska Peninsula has 
experienced population size contraction, probably due 
to glaciations (Table 2).

SNP summary statistics of geographical groups 
revealed the Alaska Peninsula, the Scandinavian 
Mountains and Western Quebec as the most 
genetically diverse areas (Table 3; see also Supporting 
Information, Fig. S8, Tables S5 and S8). For example, 
the Alaska Peninsula and the Scandinavian Mountains 
populations were more differentiated based on the 
TreeMix graph (see also Supporting Information, 
Fig. S9). The genetic signatures in these geographical 
areas may be related to historical events and the 
preservation of different haplotypes through time. The 
LGM distribution model indicated that the Alaska 
Peninsula was a suitable habitat for R. lanuginosum, 
and the ice sheet did not entirely cover it (see also 
Supporting Information, Fig. S11). In other bryophytes 
and vascular plants, refugial populations seemed to be 
genetically diverse and different from other populations 
(Petit et al., 2003; Hedenäs, 2008, 2012; Kyrkjeeide 
et al., 2016a; Westergaard et al., 2019; Pérez-Escobar 
et al., 2020). Thus, some R. lanuginosum populations 
could have survived glaciations in Beringia, a well-
known Quaternary refugium for other plants (Abbott 
et al., 2000; Abbott & Brochmann, 2003). Our current 
data indicate that the Alaska Peninsula populations 
may represent glacial refugia due to the high genetic 
diversity, private alleles and their location in ice-free 
areas during the LGM.

Also, the Scandinavian Mountains and Western 
Quebec had high genetic diversity. The Scandinavian 
Mountains may be represented by populations that 
survived under the ice sheet or in situ, as exemplified 
in the hypothesized refugia located on the coast of 
Norway (Kyrkjeeide et al., 2014; Westergaard et al., 
2019). Gene flow from the Alaska Peninsula or the 
Scandinavian Mountains may account for the higher 
diversity in Western Quebec than in nearby areas 
(see also Supporting Information, Figs S8 and S9). 
Nevertheless, the retention of ancient polymorphisms 
due to in situ survival in microrefugia or under the ice 
sheet could also explain the high genetic diversity in 
this population. For example, at the retreating edge of 
the Twin Glacier in Ellesmere Island, Canada (1410 to 
1690 years bp), R. lanuginosum was discovered with 
a high content of chlorophyll comparable to extant 
populations even though the pigment degraded after 
some days of light exposure (La Farge, Williams & 
England, 2013). Additionally, bryophyte populations 
have been found in an ice-retreated margin of 
Teardrop Glacier in Nunavut, Canada, dating from 
404 to 614 years bp; after in vitro culture, four species 
exhibited regrowth from ice entombment (Bergsma, 
Svoboda & Freedman, 1984). Even more prolonged 

survival under permafrost has been reported for 
Chorisodontium aciphyllyum (Hook.f. & Wilson) 
Broth. in the Antarctic area (c. 1.5 kya) by Roads, 
Longton & Convey (2014). Nunataks might also 
function as refugial areas (e.g. Pan et al., 2020; Paus, 
2021), especially for R. lanuginosum that can survive 
high Arctic conditions. These examples illustrate the 
potential ability of bryophytes to cope with extreme 
cold periods, at least for hundreds of years.

The LGM might have influenced the demographic 
dynamics of R.  lanuginosum  contracting its 
distribution range as recovered by the distribution 
models. Haplotype and nucleotide diversities are low 
in recent North American deglaciated areas and the 
Scandinavian Lowlands (Table 3; see also Supporting 
Information, Fig. S8). These results agree with 
population bottlenecks during the LGM followed by 
post-glacial colonization for other Amphi-Atlantic 
bryophytes (Désamoré et al., 2016). The comparison of 
the present distribution model with the LGM and LIG 
shows a range expansion to northern habitats. Refugial 
populations of R. lanuginosum, such as in the Alaska 
Peninsula, could have dispersed to ice-free areas in the 
Northern Hemisphere as glaciers retreated (Abbott 
& Brochmann, 2003). These dispersion routes are 
evident in the TreeMix population graph. The Alaska 
Peninsula and the Scandinavian Mountains are at the 
base, followed by northern North America, eastern 
North America and the Scandinavian Lowlands (see 
also Supporting Information, Fig. S9). For Europe, 
the species could survive cold conditions between 
the European Alps and the northern ice sheet in the 
tundra and then migrate to Scandinavia. This scenario 
is exemplified by the mosses Rhytidium rugosum 
(Hedw.) Kindb. and Drepanocladus turgescens 
(T. Jensen) Loeske, which both have genetically 
distinct populations in Scandinavian Mountains and 
Lowlands (Hedenäs, 2014, 2015; Hedenäs & Bisang, 
2019). Moreover, the addition of southern European 
populations could shed light on post-glacial dynamics 
in R. lanuginosum at a continental scale, specifically 
to test whether this species also follows the European 
southern refugium hypothesis (see Kyrkjeeide et al., 
2014). These results show how the LGM affected the 
spatial genetic structure of the R. lanuginosum.

Finally, our data indicate that geographical groups 
have experienced migration events. For example, the 
Western Quebec population could have experienced 
gene flow with the Alaska Peninsula population 
(see also Supporting Information, Fig. S9). TreeMix 
analyses must be considered exploratory because 
they were conducted with a sliding window of 
ten SNPs; however, these results agreed with the 
levels of co-ancestry observed among groups in 
fineRADstructure and FST results (Fig. 4; see also 
Supporting Information, Table S9).
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CONCLUSIONS

Racomitrium lanuginosum  comprises distinct 
molecular lineages, most probably corresponding to 
cryptic species with sympatric distribution across 
the Northern Hemisphere. We recovered three clades 
with the ITS marker (blue, green and orange) and 
four SNP-based genetic groups (A–D) with different 
distributions in Arctic and sub-Arctic environments 
diverging around 5 Mya. Long-distance dispersal has 
occurred from eastern North America to Scandinavia. 
Populations from the Alaska Peninsula could be 
considered glacial refugia according to their nucleotide 
and haplotype diversity, private alleles, FST estimates 
and the geographical distribution in ice-free areas 
during the LGM. There is evidence of in situ survival 
in the Scandinavian Mountains. Furthermore, the 
species probably experienced a range contraction 
during the LGM followed by post-glacial dispersal 
from refugial populations northwards in the Northern 
Hemisphere. Finally, we conclude that complex events 
such as cryptic speciation, long-distance dispersal and 
post-glacial expansion are shaping the evolutionary 
history of R. lanuginosum. Applying an integrative 
approach with a Sanger-sequenced marker, GBS and 
distribution models allowed elucidation of factors 
that shaped the observed genetic signatures. The 
phylogeography of this northern moss exemplifies the 
complex demographic history in cold environments 
and contributes to recognizing evolutionary patterns 
in the Northern Hemisphere.
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Figure S1. The composite likelihood and optimized number of migration edges (-m) inferred by OptM from -m 0 to 
10. A, Mean composite likelihood L(m) with its SD (left axis) and the proportion of variance explained (right axis) 
of ten iterations of -m values. The iterations did not reach the 0.998 proportion threshold of the explained variance 
recommended to estimate migration edges in TreeMix analyses (see Materials and methods, GBS analyses, 
genetic structure analyses). B, Second-order rate of change for each -m value (Δm values). One migration edge 
was selected according to the highest Δm for this dataset.
Figure S2. Map of Racomitrium lanuginosum vetted records from GBIF portal consisting of 2421 occurrences.
Figure S3. Maximum-likelihood tree of 147 samples of Racomitrium lanuginosum based on ITS rooted on 
R. pruinosum. The three recovered clades are colour-coded. Only bootstrap values higher than 90 are presented. 
Several polytomies resulted within clades, and groups were collapsed instead.
Figure S4. Distribution map of Racomitrium lanuginosum clades recovered from ITS phylogenetic analyses. 
There is a low spatial genetic structure. Clade blue occurs more North in the Arctic and clades orange and green 
are more common in the sub-Arctic zones.
Figure S5. Maximum-likelihood tree of Racomitrium lanuginosum based on 605 SNPs found in at least 20% of 
126 samples. Only groups with bootstrap values > 70 are represented in colours according to ITS-based clades as 
a topology comparison. Two clades were recovered but with a new group clustered within clade blue. The clades 
represented by orange and green ITS samples are still sister groups in this SNP-based phylogenetic tree.
Figure S6. Maximum-likelihood tree of Racomitrium lanuginosum based on 324 SNPs found in at least 40% of 
126 samples (-R 40). Only groups with bootstrap values > 70 are represented in colours according to ITS-based 
clades as a topology comparison. A group mainly composed of Alaskan samples in orange and some samples from 
the green ITS clade were well supported. The -R 20 tree had better branch support than this phylogenetic tree.
Figure S7. 50% majority consensus tree of Racomitrium lanuginosum resulted from an SVDquartets coalescent-
based analysis of 4620 loci shared by at least 20% of 126 samples (-R 20). Only clades with bootstrap values > 70 
are represented by the same colour code that genetic groups in previous analyses. Group C had low support and 
was not shown on the tree.
Figure S8. Map of ten geographic groups of Racomitrium lanuginosum and their nucleotide diversity. These 
results are based on 124 samples and 4181 loci shared by at least 60% of individuals per geographic area (-r 
60). The filters recovered 552 SNPs. Nucleotide diversity is presented according to a colour scale (top) for each 
geographic group based on SNP data. The Alaska Peninsula, the Scandinavian Mountains and Western Quebec 
have the highest nucleotide diversity. For detailed information on this map, refer to Supporting Information, 
Table S8.
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Figure S9. TreeMix population graphs of Racomitrium lanuginosum geographic groups based on 406 unlinked 
SNPs of 124 samples using a -r 50 per group filter. The window size is k-10, and one migration edge was estimated 
for the graph model. Two recurrent scenarios (5/10 replicates) are shown. A, Migration from the Alaska Peninsula 
to Western Quebec. B, Migration from an ancient hypothetical North American population to Western Quebec. 
In both cases, the Alaska Peninsula and the Scandinavian Mountains are more differentiated at the base of 
the graph.
Figure S10. The present distribution model of Racomitrium lanuginosum shows predicted suitable areas in 
green. The distribution threshold is based on a 10% training presence (AUC = 0.78). The currently suitable area 
is wider than areas predicted in the past, indicating a possible range expansion.
Figure S11. Last Glacial Maximum (c. 21 kya) distribution model of Racomitrium lanuginosum showing predicted 
suitable areas in green. Ice sheets are presented in blue shapes. The distribution threshold is based on a 10% 
training presence (AUC = 0.78). Ice-free areas such as Southern Alaska and Western Europe were predicted as 
suitable habitats.
Figure S12. Last Interglacial (c. 130 kya) distribution model of Racomitrium lanuginosum showing predicted 
suitable areas in green. The distribution threshold is based on a 10% training presence (AUC = 0.78).
Table S1. Internal transcribed spacer sequences of Racomitrium lanuginosum used for phylogenetic analyses 
indicating the dataset source, sequence name and code, herbarium code, voucher specimen, collection date, 
geographic area, locality, coordinates in latitude and longitude, haplotype, geographic group, samples randomly 
selected for sample-size corrected summary statistics clade represented by colour, ancestral area reconstruction 
analysis and accession number. Information that was not applicable, not found or missing is indicated with ‘n.a.’.
Table S2. Model log-likelihoods of four tree priors under a strict and uncorrelated log-normal clock for BEAST 
analyses of Racomitrium lanuginosum. A total of eight models were evaluated using path sampling (PS) and 
stepping-stone (SS) approaches. The strict clock with a coalescent constant size prior tree was the model that 
better explained the data.
Table S3. Samples of Racomitrium lanuginosum used for de novo parameter selection tests in Stacks. The 12 
selected samples are representatives of the complete dataset in terms of the number of reads, ITS-based clades 
and geographic areas.
Table S4. Data of 184 genotyping-by-sequencing samples of Racomitrium lanuginosum and congenerics. 
Information includes the sequence name and code, herbarium code, voucher specimen, collection date, geographic 
area, locality, coordinates in latitude and longitude, genetic group based on fineRADstructure, geographic group, 
samples randomly selected for sample-size corrected summary statistics, accession number and sequencing 
technology. Additionally, we provide the alignment results with BWA using two available transcriptomes 
(R. varium and R. elongatum). Results include the number reads, mapped reads, proportion of mapped reads, 
recovered loci and mean coverage from gstacks and missing data for each sample using three different filters: -R 
00 (9815 SNPs) 184 samples, -R 40 (411 SNPs) 127 samples and filter -R 20 (844 SNPs) 127 samples. Samples 
with accession numbers correspond to those used for phylogeographic analyses.
Table S5. Genetic diversity and demographic statistics of Racomitrium lanuginosum geographic groups based on 
ITS marker. For each group, the number of samples, polymorphic sites (S), number of haplotypes (h), haplotype 
(Hd) and nucleotide (π) diversity is presented along with their respective standard deviations (SD) and Fu & Li’s 
D and Tajima’s D statistics.
Table S6. Evolutionary timeframe for Racomitrium lanuginosum using ITS sequences under a strict clock and a 
coalescent constant size tree prior. The mean age in a million years and the 95% highest posterior density (HPD) 
are indicated.
Table S7. Mean FST pairwise comparison between genetic groups of Racomitrium lanuginosum based on 
fineRADstructure using loci shared by at least 60% of individuals per group (-r 60). Group B has high values 
suggesting higher differentiation.
Table S8. Genetic summary statistics of ten Racomitrium lanuginosum geographic groups. These results are 
based on 124 samples and loci shared by at least 60% of individuals per geographic area (-r 60). Filters recovered 
4181 loci and 552 SNPs. For each geographic group is presented the number of samples, samples per loci, total, 
private and variant sites, single nucleotide polymorphisms (SNPs), the percentage of polymorphic loci (% PL). In 
addition, the mean haplotype (Hd) and nucleotide (π) diversity and their standard errors (SE) were estimated 
for each group using SNPs. The Alaska Peninsula, the Scandinavian Mountains and Western Quebec have the 
highest genetic diversity.
Table S9. Mean FST pairwise comparison among geographic groups of Racomitrium lanuginosum with corrected 
sample sizes (eight samples) using loci shared by at least 60% of individuals per population (-r 60). The Alaska 
Peninsula and Ontario have high values suggesting higher differentiation.
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