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Two draft genomes of fungal leaf endophytes from 
tropical gymnosperms
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ABSTRACT Two ascomycetes, Neofusicoccum sp. and Xylaria sp., were isolated from 
healthy leaves of the tropical gymnosperms Zamia pseudoparasitica (Z2) and Zamia nana 
(Z50) from Panama. The two draft genomes possess a broad predicted repertoire of 
carbohydrate-degrading CAZymes, peptidases, and secondary metabolites, with more 
secondary metabolite clusters in the Xylaria isolate.
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N eofusicoccum and Xylaria are two common endophytic fungi (1, 2) isolated from two 
endemic cycad species from Panama. Cycads are the most endangered group of 

plants—nearly 72% of the 375 species have a critical IUCN status. The main threats are 
deforestation and poaching. To our knowledge, these are the two first fungal genomes 
isolated from cycads.

The two cultures were sampled from Zamia pseudoparasitica (Z2) and Zamia nana 
(Z50) from El Copé (8°40′12.12″N, 80°36′13.26″W) and El Valle de Antón (8°37′18.32.52″N, 
80° 7′13.9548″W), respectively, in Central Panamá. Briefly, middle sections of leaf samples 
were cut into 50 2 × 2 mm2 fragments and surface sterilized by placing them in a small 
strainer that was submerged and shaken constantly while they were passed through a 
disinfection battery using a 70% ethanol wash for 2 min, 1% sodium hypochlorite for 
3 min, and sterile distilled water for 1 min. The fragments were seeded on large Petri 
dishes (90 × 14 mm) containing solid potato dextrose agar (PDA) and incubated at 
24°C–26°C (ambient light) for approximately 1 week to allow fungal growth to emerge. 
To isolate pure cultures, a fragment of mycelium was taken from each cultivar, transfer
red to a test tube with inclined PDA, and grown for nearly 2 months using sterile 
tweezers. Cultures have been deposited in the collection of Department of Microbiology, 
Universidad de Panama.

Genomic DNA was extracted using a cetyltrimethylammonium bromide (3) method 
(obtaining up to 120 ng in 11.7 µL). The genomic DNA was used for library synthesis 
using a KAPA HyperPlus Kit (Roche), according to the manufacturer’s instructions. The 
library was quantified and sequenced on an Illumina MiSeq 150-bp paired-end run 
(300 cycles, v2 kit) at the Smithsonian Tropical Research Institute (Panamá). DNA reads 
were cleaned and trimmed using Trimmomatic version 0.36 (4) (-phred33), read quality 
was assessed using FastQC version 0.11.8 (5), and de novo assembled using SPADes 
version 3.14.1 (6). Genome quality and coverage were assessed using Minimap 2.1.0 (7). 
Fungal identity was verified using BUSCO version 5.0.0 (8), BLAST version 2.9.0+ (9), and 
BlobTools version 1.1 (10). After selecting only ascomycete contigs and verifying their 
taxonomic identity using BLAST, BUSCO was used to estimate the completeness of the 
filtered assemblies.

We then used the Funannotate version 1.8.12 pipeline (11) to mask repeats, predict, 
annotate, and compare the genomes. We used the “funannotate predict” command 
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to train and run three ab initio gene predictors—AUGUSTUS version 3.3.2 (12), Glim
merHMM version 3.4 (13), and SNAP v2006-07-28 (14). Functional prediction of the 
gene models was performed using InterProScan version 5.57-90.0 (15) with mapping 
to Gene Ontology (GO) terms, eggNOG-mapper version 2 (16), the Clusters of Ortholo
gous Groups of proteins (17), Pfam domains, the Carbohydrate-Active Enzyme database 
[CAZY (18)], the secreted protein database [MEROPSv12 (19)], and InterProScan version 
5.57-90.0 (15) for fungal transcription factors. We explored the richness of secondary 
metabolite gene clusters (SMGCs) using antiSMASH version 6.1.1 (20). The relaxed 
search was conducted on scaffolds and annotated genes (from the funannotate output 
“annotate results”) using the online settings knownClusterBlast, ClusterBlast, SubCluster
Blast, ActiveSiteFinder, Cluster Pfam analysis, and Pfam-based GO term annotation. The 
genome statistics for each strain are indicated in Fig. 1; Table 1.

FIG 1 Morphological and genomic features of fungal genomes. (A) Culture of Neofusicoccum sp. (Z2). (B) Culture of Xylaria sp. (Z50). (C) Snail plot indicating 

general features of the genomes, such as N50, scaffold length, and GC content of Neofusicoccum sp. (Z2). (D) Snail plot indicating general features of the genomes 

such as N50, scaffold length, and GC content of Xylaria sp. (Z50). (E) Secondary metabolite gene clusters (SMGCs) predicted from antiSMASH analyses for both 

genomes, highlighting non-ribosomal peptides (NRPs), polyketides, and terpenes. A complete annotation of the SMGCs can be found at https://github.com/

jcarlosvillarreal/fungal_cycad_genomes_Panama.
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TABLE 1 Genome statistics for fungal isolates from Zamia pseudoparasitica (Z2) and Zamia nana (Z50) 
from Panama

Parameter Neofusicoccum parvum (Z2) Xylaria sp. (Z50)

No. of clean reads 5,599,532 6,504,418
Total genome size (bp) 33,764,537 41,770,564
Largest scaffold 1,389,236 1,612,932
Number of scaffolds 123 134
N50 (bp) 403,681 638,724
Coverage (×) 62 64
GC content (%) 56.53 43.83
No. of genes 9,753 10,245
No. of proteins 9,634 10,030
No. of tRNAs 119 215
Completeness (%) (BUSCO) 92,5 84
Number of secondary metabolite
gene clusters

50 95

Number of CAZY enzymes 450 446
Number of secreted peptidases 343 344
Accession no. JBAWJY000000000 JBAWJU00000000
SRA SRX22736318 SRX22949399
BioSample SAMN38641487 SAMN38693397
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